
Density functional theory applied to metallic hydrogen: pair correlations and phase transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 9109

(http://iopscience.iop.org/0953-8984/14/40/305)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 18/05/2010 at 15:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 9109–9120 PII: S0953-8984(02)36384-7

Density functional theory applied to metallic
hydrogen: pair correlations and phase transitions

Hong Xu
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Abstract
A density functional theory (DFT) for a two-component system of classical
ions and degenerate electrons is presented. The theory is based on an ‘orbital-
free’ free energy of the ion–electron plasma, which includes a square-gradient
correction to the Thomas–Fermi kinetic energy of the degenerate electrons. Pair
correlations in the metallic phase of hydrogen are calculated and compared to
‘ab initio’ DFT-MD simulation data. The freezing transition of a pressure-
ionized hydrogen plasma and the plasma–insulator transition of spin-polarized
fluid hydrogen are considered.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The present paper is a short review of a series of articles devoted to a simple two-component
density functional theory (DFT) of hydrogen plasma [1–4]. The study of the structure and the
thermodynamics of systems composed of ions and electrons such as metallic liquids or plasma
is a challenging task, mainly because of the many-body problem involving the electrons (see
e.g. [5]). For many physical situations (metallic liquids, or dense plasmas), the ions can be
considered as a classical component. Adopting this hypothesis, the simplest description of a
ion–electron system is the one-component plasma (OCP) model [6], which treats the electrons
as forming a homogeneous background neutralizing the total charges. The OCP serves as a
reference system for more elaborate studies of liquid metals and dense plasmas. The simplest
of these, that using the linear response theory (LRT) [7], gives reasonable results in the regime
of very high density, where the electronic density responds linearly to external perturbations
(i.e. the ionic configurations), with the response function given by that of the homogeneous
electron gas. Within this framework, the ion–electron system is seen as an effective one-
component system, where the effective ion–ion interaction is computed by taking into account
the screening of the bare ion–ion potential provided by the linearly responding conduction
electrons. Steps towards two-component treatments of ion–electron system began when some
authors [8–10] applied the DFT to those systems. In the DFT formalism, one can formally
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treat both components on a equal footing, with the inhomogeneous electron gas obeying the
Hohenberg–Kohn–Mermin theorem [11, 12]. But, while Mermin’s theorem states that the
energy (or free energy) of the system is an unique functional of the inhomogeneous local
densities, its actual form is unknown for the electron gases. In [8] and [9], the Kohn–Sham
representation has been used. This implies heavy numerical computations [13], involved in the
resolution of the Kohn–Sham orbitals. On the other hand, in [10], the kinetic energy functional
of a inhomogeneous electron gas was taken to be the Thomas–Fermi functional, which stems
from a local density approximation (LDA) of the kinetic energy [16]. This of course was too
crude an approximation. Recently, we have proposed a density functional formulation [2]
in which a square-gradient correction was added to the Thomas–Fermi kinetic energy of the
degenerate electrons. On choosing judiciously the prefactor of the square-gradient correction,
our theory gave the ion–ion and ion–electron pair correlations in hydrogen plasma in good
agreement with the results of ab initio molecular dynamics simulations [14].

Besides the structure, we are also interested in the thermodynamics of the ion–electron
system. The computation of the free energy difference between a system in which both the
ion and the electron components are inhomogeneous and a homogeneous reference system
can be done within our DFT formalism, as can be seen in our first application of the present
DFT [1], i.e. the freezing transition of the pressure-ionized hydrogen plasma. When the system
is disordered on average (the fluid phase), things are complicated by the quantum nature of the
electrons. The only exact route at our disposal is a double-density integration of the isothermal
compressibility, linked to the ion–ion or ion–electron structure factors at very large wavelength.
However, this route is subject to numerical imprecision [2, 3]. In [2], we suggested using an
‘ion-sphere’-type approximation to obtain the average kinetic and potential energies of the
system in order to use the virial theorem to compute the equation of state and the free energy
of the metallic fluid. Unfortunately, when applied to spin-polarized fluid hydrogen plasma [3],
the virial and compressibility routes lead to quite large thermodynamic inconsistency. In a
more recent study [4], we applied the coupling-constant integration procedure to the ion–
electron fluid in order to evaluate its free energy. This more accurate calculation led to quite
reasonable results (cf [4]).

The paper is organized as follows. In section 2 we recall the formalism of the present DFT
and present some key equations of the theory. Section 3 shows results for pair correlations
in metallic hydrogen. Section 4 revisits the freezing transition of dense hydrogen plasma.
Section 5 is devoted to the case of the plasma–insulator (PI) transition of the spin-polarized
fluid hydrogen. And section 6 gives some conclusions.

2. An ‘orbital-free’ density functional theory of ion–electron systems

We consider a system of dense plasma. The formalism can be readily extended to metallic
liquids. Our system is viewed as a two-component fluid, i.e. ions, carrying a charge Ze and
electrons, carrying a charge −e, with Coulomb interaction between the particles. The present
DFT formalism has been described in detail in our previous work (see [1, 2]). We sketch here
only the main lines of it. Under the effect of external potentials {φα(r), α = i, e}, the local
densities of the two components {ρα(r)} become non-uniform. And the Hohenberg–Kohn–
Mermin theorem [11, 12] leads to the Euler–Lagrange equations:

δF

δρα(r)
+ φα(r) = µα; α = i, e (1)

where F is the free energy functional, which, as usual, can be split into the ideal-gas part
(Fid ) and excess part (Fex ), with Fid = F (i)

id [ρi ] + F (e)
id [ρe] and Fex = F (ii)

ex + F (ie)
ex + F (ee)

ex .
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We notice that for T � TF , we have F (e)
id = E (e)

K [ρe] (kinetic energy functional), and
F (ee)

ex = EH (e)[ρe] + E (e)
XC [ρe] (Hartree and exchange correlation functionals). The second

functional derivatives of F are the inverse elements of the susceptibility matrix:

δ2β F

δρα(r) δργ (r′)
= χ−1

αγ (r, r′) (2)

which in turn splits into an ideal-gas part and an excess part:

χ−1
αγ (r, r′) = χ(0)−1

α (|r − r′|)δαγ − kB T cαγ (|r − r′|). (3)

The first term is diagonal. The second term, due to the excess free energy, defines the direct
correlation functions (DCFs). The fluctuation-dissipation theorem for the ion–electron mixture
states (see, e.g., [2])

χαγ (r, r′) = ρα(r)ρ
γ
(r′)hαγ (r, r′) + ραδαγ δ(r, r′) (αγ = i i and ie) (4)

where hαγ (r, r′) = gαγ (r, r′) − 1 is the two-point (or pair) correlation function, while gαγ

denotes the pair distribution function (pdf) for particles of species α and γ (αγ = i i and ie).
These relations, combined with equation (3) and the fact that for the classical component

(the ions) we have χ
(0)−1
i (r, r′) = 1

ρi (r)
δ(r − r′), lead to three Ornstein–Zernike relations

linking the χ-matrix to the c-matrix [2, 9, 13]:

hii (r, r′) = cii (r, r′) + hii ∗ (ρi cii )(r, r′) + hie ∗ (ρecie)(r, r′) (5a)

hie ∗ (ρeχ
(0)−1
e )(r, r′) = cie(r, r′) + hii ∗ (ρi cie)(r, r′) + hie ∗ (ρecee)(r, r′) (5b)

(χee − χ(0)
e ) ∗ (χ(0)−1

e )(r, r′) = (ρi hie) ∗ (ρecie)(r, r′) + χee ∗ (cee)(r, r′) (5c)

where ∗ denotes a convolution product. For the quantum component (the electrons), χ(0)
e for

homogeneous non-interacting fermions is the well known Lindhard function [15], which, in
atomic units (au), reads

χ̂ (0)
e (k) = − kF

π2

[
1

2
+

1 − q2

4q
ln

∣∣∣∣ 1 + q

1 − q

∣∣∣∣
]

(6)

where q = k/2kF , and kF = (9π/4)1/3/rs is the Fermi momentum. Within the framework of
our ‘orbital-free’ density functional F[ρi , ρe], χ(0)

e will depend on the approximation used
for kinetic energy functional of the inhomogeneous electron gas. In the Thomas–Fermi
approximation, EK = CK

∫
[ρe(r)]5/3 dr (CK = 3(3π2)2/3/10), we have

χ̂ (0−T F)
e (k) = − kF

π2
(7)

whereas the Thomas–Fermi plus square-gradient correction (‘Weizsäcker’) approximation
(TF-W(λ)), with

EK [ρe] = CK

∫
[ρe(r)]5/3 dr +

λ

8

∫ |∇ρe(r)|2
ρe(r)

dr, (8)

gives

χ̂ (0−T FW )
e (k) = − kF

π2

(
1

1 + 3λq2

)
(9)

where 1/9 < λ < 1 (cf [16]). Another more elaborate functional (Perrot’s functional) [17]
gives χ(0)

e under the original Lindhard form.



9112 H Xu

In most applications, we need to know χ (or, equivalently, gii , gie and χee), and c for a
homogeneous fluid. For this, we have three Ornstein–Zernike equations at our disposal. In
Fourier space, we write (cf equations (5a)–(5c) and [2])

ĥii (k) = ĉii (k) + ni ĥii (k)ĉii (k) + neĥie(k)ĉie(k) (10a)

neĥie(k)

χ̂
(0)
e (k)

= ĉie(k) + ni ĥii (k)ĉie(k) + neĥie(k)ĉee(k) (10b)

χ̂ee(k) − χ̂ (0)
e (k)

χ̂
(0)
e (k)

= ĉee(k)χ̂ee(k) + ni neĥie(k)ĉie(k) (10c)

where nα is the average density of species α. The procedure of Percus [18], fixing one ion at
the origin, providing the external potential φα , leads to two Euler–Lagrange equations, for gii

and gie. In the simplest case, the first one is a hypernetted chain (HNC) integral equation, the
second one an integro-differential equation (cf [2]). To close the system, another equation is
needed. This is given by assuming a form for Eee

ex , giving cee directly. For example, within the
LDA for the exchange energy and neglecting the correlation energy of the electrons, we have

kB T cee (r − r′) = − 1

|r − r′| +
4

9
CX

δ(r − r′)
[ρe(r)]2/3

(11)

where CX = 3(3/π)1/3/4. The well known random phase approximation corresponds to
neglecting the exchange term in (11).

Once λ is fixed (see the next section), the equations described above define entirely the
pair and DCFs needed to characterize the structure of our two-component ion–electron system.

3. Pair correlations in metallic hydrogen

We consider hydrogen under high pressure and temperature, i.e. 0 < rs < 1.5 and T > 3000 K.
We recall that rs is defined by ne = 3/(4πr3

s a3
B) with aB the Bohr radius. Under these

conditions, the system forms a plasma phase, and our formalism in section 2 applies. Before
solving for the pair and direct correlations, we fixed λ as explained in [2]. For a dense plasma
at rs = 0.5, we make the depth of the first minimum of gpe(r; λ) equal to that obtained by
standard linear response, gL RT

pe , taking the Lindhard function for χ(0)
e and the OCP as the

reference system (subscript ‘p’ stands for proton). Figure 1 shows the comparison of these
gpe against DFT-MD simulation results of [11]. We can see from figure 1 that the optimal
choice λ = 0.41 gives very good agreement with both MD and LRT results for r > 0.5aB ,
but it violates the cusp condition at the origin. The choice of λ = 1 is globally not at all
satisfactory, although it fulfils the cusp condition. We point out that the behaviour of the MD
results near the origin is an artefact of the finite cut-off in the plane-wave expansion of the
energy of the inhomogeneous electron gas. We also found that optimal λ is quite independent
of T , showing the robustness of the method. Figure 2 shows the influence of λ on gpp(r), for
a moderate density, rs = 1; we see that again λ = 0.41 gives the proton–proton distribution
in good agreement with MD results, whereas taking λ = 1 leads to overestimated structure
in gpp. This can be understood from figure 1, as a consequence of a too weak electron
density polarization around the protons. In figure 3, we compare our gpp(r) with the QHNC
results [9] and the simpler DFT of Ofer et al [10]. While the agreement with Ofer et al is good,
the QHNC finding is slightly shifted to larger r , perhaps because χe was used in the latter. We
can also examine the proton–electron DCF cpe. In a mean-field approximation, we assume
cpe = −βvpe. We can see from figure 4 that cpe obtained from our DFT-HNC theory is only
mean-field-like above a certain distance rc > aB , which depends on the density, with rc larger
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Figure 1. The proton–electron pair distribution function gpe(r) of hydrogen plasma at rs = 0.5
and T = 10 000 K. Displayed are results from the present HNC-TFW theory with λ = 0.41 (dotted
curve), λ = 1 (dashed curve); compared to the linear response prediction (solid curve) and the DFT
ab initio simulation results [14] (circles). a1 is the ion-sphere radius defined by n p(4πa3

1/3) = 1.

when ne decreases (rs increasing), indicating that a mean-field approximation is more suitable
at high densities (rs < 0.5). In figure 5, cpe in the Fourier space is plotted. Again, we see that
ĉ pe(k) is Coulomb-like for small k-values. But its asymptotic behaviour, although tending to
zero, deviates from the mean-field curve.

4. The freezing transition

In this section we show an earlier application of the present DFT, which is the freezing transition
of a dense hydrogen plasma. In order to simplify the theoretical framework, the freezing theory
of Ramakrishnan and Yussouff [19] is adopted. For very dense systems (rs < 0.5), the crystal
lattice can be assumed to be the bcc lattice (as for the OCP). We split the free energy difference
between the solid and fluid phases into ideal-gas and excess parts, with

β 
Fid

Np
=

∫
dr ρp(r) ln[ρp(r)/n p] − 1

2

∑
{G}

′{χ0
e }−1

ξ2
e (G) (12)

and

β 
Fex

Np
= −1

2

∑
α=p,e

∑
β=p,e

∑
{G}

′cαβξα(G)ξβ(G) (13)

where {G} are the reciprocal-lattice vectors;
∑′

{G} indicates that we exclude the G = 0 vector;
ξα(G) are the order parameters for species α in the solid phase. Here, the electronic density is
treated at linear response level. And we leave out—as is done for OCP [20]—the contribution
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Figure 2. The proton–proton pair distribution function gpp(r) of hydrogen plasma at rs = 1 and
T = 3000 K. Displayed are results from the present HNC-TFW theory with λ = 0.41 (solid curve),
λ = 1 (dotted curve); compared to the DFT ab initio simulation results [14] (dots).

from the second star in the reciprocal-lattice space. For simplicity, we express ρp(r) as a sum
of Gaussians centred at the lattice sites; i.e.,

ξ
(p)

G = e−G2/4ζ (14)

is adopted. When the variational principle is applied to the electrons, one obtains

ξe(G) = −ξp(G)ĉ pe(G)/[{χ0
e }−1

(G) + ĉee(G)] (15)

linking the order parameters of the electrons linearly to those of the protons. And minimizing

F with respect to ζ will fix the latter as a function of the proton coupling parameter 

( ≡ Z 2e2/(kB T )a1, with a1 the ion-sphere radius), and the density parameter rs . As cee is
given by the LDA form of equation (11), cpp and cpe must be supplied. In principle, they can
be obtained as in section 3, but the procedure, coupled with the freezing problem, appears to be
numerically difficult, since large proton coupling constants  must be involved in the present
study. In [1], a simple form for cpe was adopted:

cpe(r) = −βvpe(r) erf(r/r0) (16)

with an ad hoc choice of r0 > aB ; whereas cpp came from numerical resolution of the integral
equation

gpp(r) = exp(−βvpp(r) + gpp(r) − 1 − cpp(r) + B(r)) (17)

with the bridge function B(r) given by the Rogers and Young closure for the OCP [21], so
that the OCP freezing can be correctly recovered, and ĥ pp, ĉ pp and ĥ pe are linked by the first
OZ relation (10a), in which ĥ pe(k) is given by the second OZ relation, as a function of χ(0)

e
and ĉee. To make the theory self-contained, χ(0)

e is taken to be the Lindhard response function.
For given rs < 0.5, we determined the melting temperature by searching for m such that

F(m) = 0. The main results of this study are in figures 1, 2 of [1]. The conclusions are:
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Figure 3. The proton–proton pair distribution function gpp(r) of hydrogen plasma at rs = 1 and
the proton coupling constant  = 10 (T = 3.16 × 104 K). Displayed are results from the present
HNC-TFW theory with λ = 0.41 (solid curve), compared to the QHNC results of Chihara [9]
(dotted curve marked by triangles) and the HNC-TF work by Ofer et al [10] (dotted curve marked
by filled circles).

(1) as rs increases, m increases quite rapidly (i.e. the freezing temperature decreases
strongly);

(2) at freezing, the Lindmann parameter remains relatively constant.

These results, while qualitatively correct, could be improved quantitatively. One can consider,
e.g., a more evolved freezing theory, along the lines indicated by [22], but this is onerous
to implement. The formalism is not suited for freezing of hydrogen plasma with rs > 0.5,
since molecules are not built in and quantum effects on protons should be included when m

increases further. The formalism, however, can be used for other systems, as in [23], where
the freezing of Al is tentatively studied.

5. The plasma–insulator transition of a spin-polarized fluid

In the present section we are interested in the metallic–insulator transition of hydrogen induced
by the pressure [3, 4]. For the solid phase, although such a transition had been predicted by
Wigner some time ago [24], it has been very hard to get experimental evidence of it [25].
On the other hand, for the fluid phase, such evidence has been found recently [26]. As the
experimental system is rather complex, with H2, H2

+, H, H+ and electrons present, a full
description is beyond the scope of the present DFT. Rather, we study the PI transition of a
spin-polarized fluid hydrogen, in order to focus on the aspect of pressure-induced ionization,
without tackling the aspect of pressure-induced molecular dissociation. The study is conducted
by comparing the free energies of the two phases, described by two different Hamiltonians,
as in [27], because our two-component fluid picture is suited for the plasma phase, but not for
atomic recombination.
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Figure 4. The proton–electron direct distribution function cpe(r) of hydrogen plasma obtained
from the present HNC-TFW theory with λ = 0.41. Displayed is the function cpe(r)r/. The solid
curve corresponds to the state point rs = 0.5 and T = 6320 K, and the dotted curve to rs = 1 and
T = 3000 K. The mean-field asymptote (dash–dotted line) is also shown.

Figure 5. As figure 4, but in Fourier space. Displayed is the function ln[ĉpe(k)/4π] versus ka1.
The solid curve corresponds to the state point rs = 0.5 and T = 6320 K, and the dotted curve to
rs = 1 and T = 3000 K. The mean-field approximation is also shown (dash–dotted curve). Notice
the log scale on the y-axis.
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Figure 6. The triplet pair potential in the atomic H↑ phase given by [28], in atomic units.

The low-pressure insulating phase is composed of H↑ atoms in the fluid phase. The
effective pair interaction is known [28]. We see from figure 6 that it is rather short ranged. A
standard integral equation theory of liquids leads to structural and thermodynamic properties
of the system [5]. For the sake of consistency with the plasma phase, we have adopted the HNC
closure for the atomic fluid. This leads to an analytical formula for the free energy [29]. The
high-pressure phase is the plasma phase, described by the ion–electron Hamiltonian. As we
showed in [3], the effect of increasing rs can be seen in the proton–proton and proton–electron
pair distribution functions gpp(r) and gpe(r), and in the proton–proton structure factor Spp(k).
In particular, for T = 10 000 K and rather low density, rs = 2.5, there is a sharp increase of
Spp(k) for k = 0, hinting at a fluid near a spinodal instability. In order to confirm this, in [3]
we calculated the free energy of the plasma phase by two routes: the compressibility route and
an approximate virial route [2]. Unfortunately, an important thermodynamic inconsistency,
typical of a HNC closure, was observed, in the region of interesting rs (2–2.5). However,
taking the average value of the two free energy curves, we were indeed able to estimate that
the PI transition was located at rs ≈ 2.5 for T = 10 000 K. Serious convergence difficulties
prevented us from pushing calculations beyond rs = 2.5. In a more recent piece of work [4],
a third route for calculating the free energy has been proposed. It consists of the well known
coupling-constant integration method [5]. The resulting free energy lies very close to the one
given in [3], validating the procedure used in [3] (cf figure 9 of [4]). We believe the third route
to be the most reliable way of computing the free energy of the present plasma phase, and it
can of course be applied to other ion–electron systems.

6. Conclusions

From the above examples, we see that the present ‘orbital-free’ DFT/HNC theory provides
a simple framework for the structure and thermodynamics of ion–electron plasmas. The
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theory avoids the Kohn–Sham orbitals by the use of a Thomas–Fermi–Weizsäcker kinetic
energy functional of the degenerate electron gas. For metallic hydrogen, pair correlations that
we obtained compare quite well with available ab initio simulation results [14]. Two phase
transitions have been investigated within the present DFT, i.e. the freezing of hydrogen plasma
and the PI transition of spin-polarized fluid hydrogen. Although there is no direct comparison
of our results with simulation ones, we showed clearly qualitatively correct tendencies.

There are some limitations of the theory: first, a criterion for finding λ as a function of
rs is lacking; second, as the effective ion–ion interaction [2] φii becomes more short ranged,
the HNC closure may not be the best suited one. A thermodynamic consistency criterion is
needed. This is at the moment difficult to find, since an exact virial equation of state does
not exist. Although the approximate one in [2] could be used, its practical implementation
can be onerous. Despite these drawbacks, the present theory remains quite simple and gives
reasonable results for hydrogen plasma. It can be applied to other ion–electron systems for
which T � TF , e.g. metallic liquids, or their mixtures, for which ab initio studies have been
carried out but are costly [30], or systems of astrophysical interest, e.g. H–He mixtures, for
which the demixing transition has been investigated by means of ab initio simulations [31].
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